Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Rev Med Virol ; 31(6): e2234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574124

ABSTRACT

The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Predisposition to Disease , Influenza, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Biological Variation, Individual , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Gene Expression , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , COVID-19 Drug Treatment
2.
Food Funct ; 12(20): 9607-9619, 2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1500759

ABSTRACT

At the end of 2019, the COVID-19 virus spread worldwide, infecting millions of people. Infectious diseases induced by pathogenic microorganisms such as the influenza virus, hepatitis virus, and Mycobacterium tuberculosis are also a major threat to public health. The high mortality caused by infectious pathogenic microorganisms is due to their strong virulence, which leads to the excessive counterattack by the host immune system and severe inflammatory damage of the immune system. This paper reviews the efficacy, mechanism and related immune regulation of epigallocatechin-3-gallate (EGCG) as an anti-pathogenic microorganism drug. EGCG mainly shows both direct and indirect anti-infection effects. EGCG directly inhibits early infection by interfering with the adsorption on host cells, inhibiting virus replication and reducing bacterial biofilm formation and toxin release; EGCG indirectly inhibits infection by regulating immune inflammation and antioxidation. At the same time, we reviewed the bioavailability and safety of EGCG in vivo. At present, the bioavailability of EGCG can be improved to some extent using nanostructured drug delivery systems and molecular modification technology in combination with other drugs. This study provides a theoretical basis for the development of EGCG as an adjuvant drug for anti-pathogenic microorganisms.


Subject(s)
Anti-Infective Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Immunologic Factors/pharmacology , Animals , Antioxidants/pharmacology , Coronavirus/drug effects , Hepatitis Viruses/drug effects , Humans , Inflammation/drug therapy , Mycobacterium tuberculosis/drug effects , Orthomyxoviridae/drug effects , Oxidative Stress/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
3.
Viruses ; 13(11)2021 11 04.
Article in English | MEDLINE | ID: covidwho-1502533

ABSTRACT

The COVID-19 pandemic has deeply influenced sanitization procedures, and high-level disinfection has been massively used to prevent SARS-CoV-2 spread, with potential negative impact on the environment and on the threat of antimicrobial resistance (AMR). Aiming to overcome these concerns, yet preserving the effectiveness of sanitization against enveloped viruses, we assessed the antiviral properties of the Probiotic Cleaning Hygiene System (PCHS), an eco-sustainable probiotic-based detergent previously proven to stably abate pathogen contamination and AMR. PCHS (diluted 1:10, 1:50 and 1:100) was tested in comparison to common disinfectants (70% ethanol and 0.5% sodium hypochlorite), in suspension and carrier tests, according with the European UNI EN 14476:2019 and UNI EN 16777:2019 standards. Human alpha- and beta-coronaviruses hCoV-229E and SARS-CoV-2, human herpesvirus type 1, human and animal influenza viruses, and vaccinia virus were included in the study. The results showed that PCHS was able to inactivate 99.99% of all tested viruses within 1-2 h of contact, both in suspension and on surface. Notably, while control disinfectants became inactive within 2 h after application, the PCHS antiviral action persisted up to 24 h post-application, suggesting that its use may effectively allow a continuous prevention of virus spread via contaminated environment, without worsening environmental pollution and AMR concern.


Subject(s)
Disinfection/methods , Probiotics/pharmacology , Sanitation/methods , Virus Diseases/prevention & control , Viruses/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Coronavirus 229E, Human/drug effects , Disinfectants/pharmacology , Environmental Microbiology , Herpesvirus 1, Human/drug effects , Humans , Orthomyxoviridae/drug effects , SARS-CoV-2/drug effects , Vaccinia virus/drug effects , Virus Diseases/virology
4.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1480883

ABSTRACT

Viral infections are among the most complex medical problems and have been a major threat to the economy and global health. Several epidemics and pandemics have occurred due to viruses, which has led to a significant increase in mortality and morbidity rates. Natural products have always been an inspiration and source for new drug development because of their various uses. Among all-natural sources, plant sources are the most dominant for the discovery of new therapeutic agents due to their chemical and structural diversity. Despite the traditional use and potential source for drug development, natural products have gained little attention from large pharmaceutical industries. Several plant extracts and isolated compounds have been extensively studied and explored for antiviral properties against different strains of viruses. In this review, we have compiled antiviral plant extracts and natural products isolated from plants reported since 2015.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Biological Products/pharmacology , Drug Development , Plant Extracts/pharmacology , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/pharmacology , Antiviral Agents/chemistry , Biological Products/chemistry , Biological Products/isolation & purification , Drug Discovery , Flavivirus/drug effects , Hepatitis Viruses/drug effects , Humans , Molecular Structure , Orthomyxoviridae/drug effects , Plant Extracts/chemistry , Simplexvirus/drug effects
5.
Eur J Med Chem ; 224: 113683, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1293756

ABSTRACT

The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 µM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 µM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Flavivirus/drug effects , Orthomyxoviridae/drug effects , Purines/chemistry , Purines/pharmacology , SARS-CoV-2/drug effects , Molecular Targeted Therapy , Virus Replication/drug effects
6.
J Gen Virol ; 102(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1218064

ABSTRACT

Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.


Subject(s)
Orthomyxoviridae/drug effects , Rhinovirus/drug effects , SARS-CoV-2/drug effects , Sphingomyelins/pharmacology , Animals , Bronchial Diseases/virology , Cell Line , Dogs , Epithelial Cells/virology , Humans , Influenza, Human , Lipidomics , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/drug therapy , Sphingomyelin Phosphodiesterase , Virus Replication/drug effects , COVID-19 Drug Treatment
7.
Food Chem Toxicol ; 150: 112075, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1196708

ABSTRACT

Medicinal or herbal plants are widely used for their many favourable properties and are generally safe without any side effects. Saponins are sugar conjugated natural compounds which possess a multitude of biological activities such as medicinal properties, antimicrobial activity, antiviral activity, etc. Saponin production is a part of the normal growth and development process in a lot of plants and plant extracts such as liquorice and ginseng which are exploited as potential drug sources. Herbal compounds have shown a great potential against a wide variety of infectious agents, including viruses such as the SARS-CoV; these are all-natural products and do not show any adverse side effects. This article reviews the various aspects of saponin biosynthesis and extraction, the need for their integration into more mainstream medicinal therapies and how they could be potentially useful in treating viral diseases such as COVID-19, HIV, HSV, rotavirus etc. The literature presents a close review on the saponin efficacy in targeting mentioned viral diseases that occupy a high mortality rate worldwide. This manuscript indicates the role of saponins as a source of dynamic plant based anti-viral remedies and their various methods for extraction from different sources.


Subject(s)
Antiviral Agents/isolation & purification , Saponins/isolation & purification , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Antiviral Agents/pharmacology , HIV/drug effects , Molecular Structure , Orthomyxoviridae/drug effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Saponins/biosynthesis , Saponins/chemistry , Saponins/pharmacology
9.
Int J Med Mushrooms ; 23(2): 1-11, 2021.
Article in English | MEDLINE | ID: covidwho-1105918

ABSTRACT

This review provides results obtained by scientists from different countries on the antiviral activity of medicinal mushrooms against influenza viruses that can cause pandemics. Currently, the search for antiviral compounds is relevant in connection with the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Medicinal mushrooms contain biologically active compounds (polysaccharides, proteins, terpenes, melanins, etc.) that exhibit an antiviral effect. The authors present the work carried out at the State Research Center of Virology and Biotechnology Vector in Russia, whose mission is to protect the population from biological threats. The research center possesses a collection of numerous pathogenic viruses, which allowed screening of water extracts, polysaccharides, and melanins from fruit bodies and fungal cultures. The results of investigations on different subtypes of influenza virus are presented, and special attention is paid to Inonotus obliquus (chaga mushroom). Compounds produced from this mushroom are characterized by the widest range of antiviral activity. Comparative data are presented on the antiviral activity of melanin from natural I. obliquus and submerged biomass of an effective strain isolated in culture against the pandemic strain of influenza virus A/California/07/09 (H1N1 pdm09).


Subject(s)
Agaricales/chemistry , Antiviral Agents/pharmacology , Biological Factors/pharmacology , Orthomyxoviridae/drug effects , Animals , Antiviral Agents/isolation & purification , Biological Factors/isolation & purification , Humans , Inonotus/chemistry , Melanins/isolation & purification , Melanins/pharmacology , Orthomyxoviridae/classification , Pandemics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
10.
J Basic Clin Physiol Pharmacol ; 32(3): 131-143, 2021 Feb 16.
Article in English | MEDLINE | ID: covidwho-1088787

ABSTRACT

Coronavirus COVID-19 pandemic invades the world. Public health evaluates the incidence of infections and death, which should be reduced and need desperately quarantines for infected individuals. This article review refers to the roles of Ginkgo Biloba to reduce the risk of infection in the respiratory tract, the details on the epidemiology of corona COVID-19 and influenza, and it highlights how the Ginko Biloba could have been used as a novel treatment.Ginkgo Biloba can reduce the risk of infection by several mechanisms; these mechanisms involve Ginkgo Biloba contains quercetin and other constituents, which have anti-inflammatory and immune modulator effects by reducing pro-inflammatory cytokines concentrations. Cytokines cause inflammation which have been induced the injuries in lung lining.Some observational studies confirmed that Ginkgo Biloba reduced the risk of asthma, sepsis and another respiratory disease as well as it reduced the risk of cigarette smoking on respiratory symptoms. While other evidences suggested the characters of Ginkgo Biloba as an antivirus agent through several mechanisms. Ginkgolic acid (GA) can inhibit the fusion and synthesis of viral proteins, thus, it inhibit the Herpes Simplex Virus type1 (HSV-1), genome replication in Human Cytomegalovirus (HCMV) and the infections of the Zika Virus (ZIKV). Also, it inhibits the wide spectrum of fusion by inhibiting the three types of proteins that have been induced fusion as (Influenza A Virus [IAV], Epstein Barr Virus [EBV], HIV and Ebola Virus [EBOV]).The secondary mechanism of GA targeting inhibition of the DNA and protein synthesis in virus, greatly have been related to its strong effects, even afterward the beginning of the infection, therefore, it potentially treats the acute viral contaminations like (Measles and Coronavirus COVID-19). Additionally, it has been used topically as an effective agent on vigorous lesions including (varicella-zoster virus [VZV], HSV-1 and HSV-2). Ginkgo Biloba may be useful for treating the infected people with coronavirus COVID-19 through its beneficial effect. To assess those recommendations should be conducted with random control trials and extensive population studies.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Influenza, Human/drug therapy , Orthomyxoviridae/drug effects , Plant Extracts/therapeutic use , SARS-CoV-2/drug effects , Antiviral Agents/adverse effects , COVID-19/epidemiology , COVID-19/virology , Ginkgo biloba , Host-Pathogen Interactions , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Orthomyxoviridae/pathogenicity , Plant Extracts/adverse effects , SARS-CoV-2/pathogenicity , Treatment Outcome
11.
Sci Rep ; 11(1): 821, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065936

ABSTRACT

Influenza virus and coronavirus, belonging to enveloped RNA viruses, are major causes of human respiratory diseases. The aim of this study was to investigate the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan (λ-CGN), purified from marine red algae. Cell culture-based assays revealed that the macromolecule efficiently inhibited both influenza A and B viruses with EC50 values ranging from 0.3 to 1.4 µg/ml, as well as currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an EC50 value of 0.9 ± 1.1 µg/ml. No toxicity to the host cells was observed at concentrations up to 300 µg/ml. Plaque titration and western blot analysis verified that λ-CGN reduced expression of viral proteins in cell lysates and suppressed progeny virus production in culture supernatants in a dose-dependent manner. This polyanionic compound exerts antiviral activity by targeting viral attachment to cell surface receptors and preventing virus entry. Moreover, its intranasal administration to mice during influenza A viral challenge not only alleviated infection-mediated reductions in body weight but also protected 60% of mice from virus-induced mortality. Thus, λ-CGN could be a promising antiviral agent for preventing infection with several respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Carrageenan/pharmacology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae/drug effects , SARS-CoV-2/drug effects , Animals , Antiviral Agents/therapeutic use , Carrageenan/therapeutic use , Dogs , Female , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae/physiology , SARS-CoV-2/physiology , Virus Replication/drug effects
12.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Article in English | MEDLINE | ID: covidwho-1065901

ABSTRACT

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , RNA, Messenger/pharmacology , SARS-CoV-2/genetics , Animals , COVID-19/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Cricetinae , Disease Models, Animal , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory System/drug effects , Respiratory System/metabolism , SARS-CoV-2/pathogenicity
14.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Symbiosis/immunology
15.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983187

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
16.
Microb Pathog ; 152: 104620, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-949816

ABSTRACT

Essential oils and their chemical constituents have been reported with well documented antimicrobial effects against a range of bacterial, fungal and viral pathogens. By definition, essential oils are a complex mixture of volatile organic compounds which are synthesized naturally in different parts of the plant as part of plants secondary metabolism. The chemical composition of the essential oils is dominated by the presence of a range of compounds including phenolics, terpenoids, aldehydes, ketones, ethers, epoxides and many others inferring that essential oils must be effective against a wide range of pathogens. This review article mainly focuses on the antiviral potential of essential oils and their chemical constituents especially against influenza and coronaviruses. Essential oils have been screened against several pathogenic viruses, including influenza and other respiratory viral infections. The essential oils of cinnamon, bergamot, lemongrass, thyme, lavender have been reported to exert potent antiviral effects against influenza type A virus. The essential oil of Citrus reshni leaves has been shown to be effective against H5N1 virus. The essential oil of Lippia species at a concentration of 11.1 µg/mL has been shown to induce 100% inhibition of yellow fever virus in Vero cells. Essential oils and oleoresins have been shown through in vitro and in vivo experiments to induce antiviral effects against Coronavirus infectious bronchitis virus. A study reported 221 phytochemical compounds and essential oils to be effective against severe acute respiratory syndrome associated coronavirus (SARS-CoV) using a cell-based assay measuring SARS-CoV-induced cytopathogenic effect on Vero E6 cells. The main mechanism of antiviral effects of essential oils has been found to cause capsid disintegration and viral expansion which prevents the virus to infect host cells by adsorption via the capsid. Essential oils also inhibit hemagglutinin (an important membrane protein of various viruses) of certain viruses; this membrane protein allows the virus to enter the host cell. Many essential oils and their components could inhibit the late stages of viral life cycle by targeting the redox signalling pathway. Essential oils of Thymus vulgaris, cymbopogon citratus and Rosmarinus officinalis have been found to destabilize the Tat/TAR-RNA complex of HIV-1 virus, this complex being essential for HIV-1 replication. Being lipophilic in nature, essential oils can penetrate viral membranes easily leading to membrane disintegration. The current comprehensive review will facilitate researchers to find chemical entities from plant sources as possible inhibitory agents against various viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Oils, Volatile/pharmacology , Orthomyxoviridae/drug effects , Antiviral Agents/chemistry , Humans , Oils, Volatile/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
17.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-922313

ABSTRACT

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Filoviridae/drug effects , Host-Pathogen Interactions/drug effects , Multiprotein Complexes/metabolism , Orthomyxoviridae/drug effects , Cell Line , Genes, Suppressor , Models, Molecular , Molecular Targeted Therapy , Protein Binding , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Saccharomyces cerevisiae/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
18.
Nat Commun ; 11(1): 2750, 2020 06 02.
Article in English | MEDLINE | ID: covidwho-680538

ABSTRACT

Influenza viruses annually kill 290,000-650,000 people worldwide. Antivirals can reduce death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny. Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent transmission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on population-level incidence using a new model that links viral load dynamics from clinical trial data to between-host transmission. We estimate that ~22 million infections and >6,000 deaths would have been averted in the 2017-2018 epidemic season by administering baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h would almost double the impact. Consequently, scaling up early baloxavir treatment would substantially reduce influenza morbidity and mortality every year. The development of antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail transmission and save lives.


Subject(s)
Antiviral Agents/therapeutic use , Epidemics , Influenza, Human/drug therapy , Orthomyxoviridae/drug effects , Oxazines/therapeutic use , Pyridines/therapeutic use , Thiepins/therapeutic use , Triazines/therapeutic use , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cell Proliferation , Coronavirus Infections/drug therapy , Dibenzothiepins , Humans , Influenza, Human/virology , Morpholines , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Pandemics , Pneumonia, Viral/drug therapy , Public Health , Pyridines/pharmacology , Pyridones , RNA, Messenger/metabolism , SARS-CoV-2 , Seasons , Thiepins/pharmacology , Triazines/pharmacology , Viral Load , Virus Replication/drug effects
19.
Pathog Dis ; 78(7)2020 10 07.
Article in English | MEDLINE | ID: covidwho-733382

ABSTRACT

Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus/drug effects , Drug Repositioning , Influenza, Human/epidemiology , Orthomyxoviridae/drug effects , Pandemics , Anticoagulants/therapeutic use , Antimalarials/therapeutic use , Antioxidants/therapeutic use , Chelating Agents/therapeutic use , Coronavirus/genetics , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Glycoconjugates/therapeutic use , Humans , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Orthomyxoviridae/genetics , Orthomyxoviridae/growth & development , Orthomyxoviridae/pathogenicity , Serine Proteinase Inhibitors/therapeutic use
20.
Diagn Microbiol Infect Dis ; 98(4): 115176, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-713149

ABSTRACT

The SARS-CoV-2 is the causative agent of the COVID-19 disease, a severe acute respiratory syndrome-coronavirus (SARS-CoV). Its main transmission pathway is through large respiratory droplets, as well as direct and indirect contact. Copper in different formats has been used in research and clinical settings to reduce the risk of bacterial and viral contamination. Therefore, this review aims to search for evidence about the biocidal properties of copper over the Coronaviridae family. A literature review was performed using PubMed and Ovid servers without date or language restrictions. The search was carried out on March 7, 2020, using the following search terms: [Copper] Coronavirus OR CoV OR SARS OR MERS OR Influenza. Copper destroys the replication and propagation abilities of SARS-CoV, influenza, and other respiratory viruses, having high potential disinfection in hospitals, communities, and households. Copper can eliminate pathogenic organisms such as coronavirus bacterial strains, influenza virus, HIV, and fungi after a short period of exposure. Copper seems to be an effective and low-cost complementary strategy to help reduce the transmission of several infectious diseases by limiting nosocomial infectious transmission. Copper oxide or nanocompounds may be used as filters, face masks, clothing, and hospital common surfaces to reduce viruses and bacterial incubation.


Subject(s)
Copper/pharmacology , Coronavirus Infections/prevention & control , Disinfectants/pharmacology , Influenza, Human/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/transmission , Humans , Influenza, Human/transmission , Orthomyxoviridae/drug effects , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL